
Oblivious Algorithms for Multicores and Networks of Processors

Rezaul Alam Chowdhurya, Vijaya Ramachandranb, Francesco Silvestric,∗, Brandon
Blakeleyd

aDepartment of Computer Science, Stony Brook University, Stony Brook, NY 11794-4400, USA
bDepartment of Computer Science, University of Texas, Austin, TX 78712, USA

cDepartment of Information Engineering, University of Padova, Padova 35131, Italy
dDepartment of Computer Science & Engineering, University of Washington, Seattle, WA 98195-2350, USA

Abstract

We address the design of algorithms for multicores that are oblivious to machine parameters.

We propose HM, a multicore model consisting of a parallel shared-memory machine with hi-

erarchical multi-level caching, and we introduce a multicore-oblivious approach to algorithms

and schedulers for HM. A multicore-oblivious algorithm is specified with no mention of any

machine parameters, such as the number of cores, number of cache levels, cache sizes and

block lengths. However, it is equipped with a small set of instructions that can be used

to provide hints to the run-time scheduler on how to schedule parallel tasks. We present

efficient multicore-oblivious algorithms for several fundamental problems including matrix

transposition, FFT, sorting, the Gaussian Elimination Paradigm, list ranking, and connected

components. The notion of a multicore-oblivious algorithm is complementary to that of a

network-oblivious algorithm, introduced by Bilardi et al. (2007) for parallel distributed-

memory machines where processors communicate point-to-point. We show that several of our

multicore-oblivious algorithms translate into efficient network-oblivious algorithms, adding to

the body of known efficient network-oblivious algorithms.

Keywords: multicore, cache, network, oblivious algorithm, Gaussian elimination paradigm,

list ranking

∗Corresponding author: Department of Information Engineering, University of Padova, Via Gradenigo
6/B, 35131 Padova, Italy, (email) silvest1@dei.unipd.it, +39 049 8277954 (phone), +39 049 8277799 (fax).

Email addresses: rezaul@cs.stonybrook.edu (Rezaul Alam Chowdhury), vlr@cs.utexas.edu (Vijaya
Ramachandran), silvest1@dei.unipd.it (Francesco Silvestri), blakeley@cs.washington.edu (Brandon
Blakeley)

Preprint submitted to Elsevier May 7, 2013

1. Introduction

The cache-oblivious framework [1] has provided a convenient and general-purpose approach

to developing algorithms that perform efficiently on a microprocessor with a single core and a

cache hierarchy (see [2, 3] and the references therein). A noteworthy feature of such algorithms

is that they incorporate no machine parameters in their code, and yet are shown to perform

efficiently at all levels of the cache hierarchy. The notion of network-oblivious algorithm was

introduced in [4]: a network-oblivious algorithm is designed for parallel distributed-memory

machines where processors communicate in a point-to-point fashion, and it runs efficiently

even though it includes no machine parameters, such as the number of processors or the

network topology, in its specification.

The oblivious approaches in [1, 4] are not suitable for modern multicore platforms as mul-

ticores represent a paradigm shift in general-purpose computing away from the von Neumann

model to a collection of cores on a chip communicating through a cache hierarchy under a

shared memory. But the oblivious approach is of particular relevance to multicores since

multicores with a wide range of machine parameters have already become the default desktop

configuration, resulting in the widespread need for efficient, portable code for them.

Efficient algorithms for multicores must address both caching issues and shared-memory

parallelism, and in recent years, a number of models, algorithms and schedulers for multicores

have been proposed. In its simplest form, a multicore is modeled as a collection of processing

elements or cores sharing an arbitrarily large main memory containing all data and featuring

one level of cache which could be either private (e.g., [5, 6, 7, 8]) or shared among all the

cores (e.g., [9, 7]). Since multicores are evolving towards a hierarchy of caches, a 3-level model

was introduced in [10], which consists of a collection of cores, each with a private L1 cache,

sharing an arbitrarily large main memory through a shared L2 cache; in [11] a multi-level

version of this model is briefly introduced. The Multi-BSP in [12] is a hierarchical shared-

memory model that uses latency and gap parameters in a bulk synchronous manner. Most of

the multicore algorithms in the literature are resource-aware, that is, they make use of some

machine parameters in their specifications. However, as has already been demonstrated by

cache- and network-oblivious approaches, algorithms that do not use knowledge of resource

parameters offer advantages of simplicity and portability, which has motivated us to consider

multicore-oblivious algorithms in this paper.

Since the conference version of this work [13], other papers have studied parallel algorithms

oblivious to cache or processor organizations. The work [14] introduces a parallel version of the

cache-oblivious framework in [1], named the Parallel Cache-Oblivious model, and describes

a scheduler for oblivious irregular computations. On the other hand, the papers [15, 16, 17]

study efficient algorithms that are designed to work with schedulers that are oblivious of the

cache hierarchy; these papers derive resource-oblivious algorithms that are analyzed to run

efficiently when scheduled by any scheduler that generates a small number of parallel tasks

at caches at each level of the cache hierarchy during run-time.

2

1.1. Our Results

First, and of independent interest, we present a hierarchical multi-level caching model (HM)

for multicores which was briefly described in [11] and extends the 3-level multicore caching

model in [10]. The HM model consists of a collection of cores sharing an arbitrarily large main

memory through a hierarchy of caches of finite but increasing sizes that are successively shared

by larger groups of cores. Parallelism is specified by parallel for loops and forking and joining

through recursive calls, and is asynchronous otherwise (in contrast to the bulk-synchronous

nature of Multi-BSP [12]).

Next we introduce the notion of multicore-oblivious algorithms for the HM model, which

are algorithms that make no mention of the number of cores, number of cache levels, cache

size and block transfer length of each level in the multicore. However, for improved perfor-

mance, a multicore-oblivious algorithm is allowed to provide advice or hints to the run-time

scheduler through a small set of instructions on how to schedule the parallel tasks it spawns.

We illustrate our framework by providing efficient/optimal multicore-oblivious algorithms for

several fundamental problems, including matrix transposition, sorting, FFT, the Gaussian

Elimination Paradigm (GEP) [7], list ranking, connected components, and other graph prob-

lems.

We observe that our notion of multicore-oblivious algorithms is complementary to that of

network-oblivious algorithms [4]: the former is defined in a shared-memory model, while the

latter is defined in a distributed-memory model with point-to-point communications. Never-

theless, in many cases, a problem can be solved by multicore-oblivious and network-oblivious

algorithms through similar strategies, and in fact, our multicore-oblivious algorithms for ma-

trix transposition and FFT are adapted from their network-oblivious counterparts in [4]. We

further reinforce this connection by deriving efficient network-oblivious algorithms for GEP,

list ranking, connected components, and other graph problems by adapting our multicore-

oblivious algorithms. These results enrich the body of known efficient network-oblivious

algorithms and raise hopes for a unified notion of obliviousness in parallel computation. A

summary of our key results appears in Table 3 at the end of the paper.

1.2. Paper Organization

In Section 2 we present the HM model. In Section 3 we describe three types of sched-

uler hints to support multicore-obliviousness, and illustrate them with multicore-oblivious

algorithms for matrix transposition, sparse matrix dense vector multiplication, sorting, and

FFT. In Section 4 we review the network-oblivious framework. We present efficient multicore-

oblivious and network-oblivious algorithms for important applications of GEP in Section 5,

and for list ranking, connected components, and other graph problems in Section 6. Finally,

in Section 7 we summarize our results and discuss some open problems.

3

h number of cache level (including the main memory)

p number of cores

qi number of caches at level-i

Ci cache size at level-i

Bi block length at level-i

pi number of level-(i− 1) caches that share the same level-i cache

p′i number of cores that share the same level-i cache

Table 1: Most important parameters used in the paper.

LL11

LL22

LL33

Main MemoryMain Memory

CPUCPU CPUCPU CPUCPU CPUCPU CPUCPU CPUCPU CPUCPU CPUCPU CPUCPU CPUCPU CPUCPU CPUCPU

LL44

λλ 33

LL55

Figure 1: The HM model illustrated for h = 5. The dark area below the level-3 cache λ3 covers the caches
and cores in the shadow of λ3.

2. HM Model

The hierarchical multi-level caching multicore (HM) model with h levels consists of a

collection of p cores Pi, 1 ≤ i ≤ p, with an arbitrarily large shared-memory and h − 1 levels

of caches of finite but increasing sizes. For 1 ≤ i ≤ h, we denote the i-th level of the memory

hierarchy with level-i or Li: at level-h we have the shared-memory, while at level-i, for each

1 ≤ i < h, there are qi caches, each one with size Ci and block length Bi and shared by

p′i = p/qi cores. With a slight abuse of notation, we will sometimes refer to the main memory

also as the level-h cache and set Ch = +∞ and qh = 1 for convenience. For 1 < i ≤ h,

the number of successive level-(i− 1) caches that share a given level-i cache is pi and we set

p0 = p′0. Clearly, we have p′i = p/qi =
∏i+1
j=1 pj . An arbitrary cache at level-i is denoted by

λi, and the shadow of λi is defined as the set including the p′i cores that share λi as their

level-i cache, and all level-j caches, for each 1 ≤ j < i, that lie between those cores and λi.

The most important terms used in the paper are summarized in Table 1, while figure 1 shows

the model for h = 5.

Similar to the sequential cache hierarchy, the memory hierarchy in the HM model satisfies

the inclusion property meaning that for 1 < i ≤ h, each level-i cache stores all elements present

in all level-(i − 1) caches under its shadow. Every cache uses an optimal cache replacement

policy. The HM model allows concurrent reads and, when a memory word x in cache λi+1 is

read by two or more cores not sharing the same level-i cache, the block of size Bi containing

x is replicated and stored in the respective level-i caches. Parallelism in an HM algorithm is

specified by parallel for loops, denoted with pfor, and by forking and joining subtasks.

We now define the complexity measures we use for evaluating an HM algorithm A, assum-

4

ing all cores run at the same rate. The level-i cache complexity of A, with 1 ≤ i < h, is the

maximum number of block transfers into and out of any single cache at level-i. The parallel

time complexity of A is the maximum number of operations performed by a core ignoring

delays due to memory accesses (i.e., by ignoring the memory hierarchy). The critical path of

A is defined as the length of the longest sequence of dependent operations, and matches with

the notion of critical path in the PRAM model.

In the model used in this paper we make the following assumptions which typically hold

for real multicore machines. We set p1 = 1, that is, each core has a private cache at the first

level, and ph = 1, that is, the topmost two levels h− 1 and h represent a possible sequential

cache hierarchy at the highest level. We also require that, for each 1 ≤ i < h, Ci ≥ B2
i (i.e.,

each cache is tall [1]), Bi−1 ≤ Bi ≤ piBi−1 and Ci ≥ ci · pi · Ci−1 for a suitable value ci ≥ 1

which, if not stated otherwise, is a constant. The constraints on relative cache sizes imply

the following upper bound on the number of cores: p =
∏h
i=1 pi =

∏h−1
i=2 pi ≤ K · Ch−1/C1,

where K =
∏h−1
i=2 (1/ci).

We have chosen to stay with a simple definition of the HM model, leaving unspecified

several parameters of a multicore’s caching system that are not salient to the algorithms we

present in this paper. For the algorithms we consider in this paper, we do not need cache

coherence protocols since all parallel write operations performed by our algorithms are always

on disjoint sets of data, and hence coherence is never invoked. Furthermore, for many of the

results in this paper, the optimal cache replacement policy can be replaced with a simple

generalization of LRU to multi-level caches, where the block evicted from a cache λi to make

room for a new block is the one with entries that were least recently used by the cores in the

shadow of λi, and that block is also removed from all caches under λi’s shadow.

The multicore model in [10] is the HM model with h = 3. As noted there for the 3-level

multicore model, there is an inherent tension between cache-efficient scheduling for private

level-1 caches, and that for a single shared level-2 cache: for the former, a schedule that

gives large independent tasks to the different cores is typically cache-efficient, while for the

latter, a fine-grained schedule where all cores work on the portion of the data present in

the shared level-1 cache is effective. This tension is magnified when the number of levels

increases. Multicore algorithms for sorting were given in [5, 18, 17], and the algorithms in

[18, 17] claim fairly good performance on a multi-level cache hierarchy. However, this claimed

good performance is still a factor of p′i worse than the best possible for each cache level-i,

and is obtained by analyzing a simple assignment to each core of a proportionate slice of the

level-i cache above it, for each i. In contrast, the multicore-oblivious algorithms we present

fully exploit the higher level caches, rather than just a small fraction of the best possible.

3. Multicore-Oblivious Algorithms on the HM Model

For the effective use of multicores, we introduce the notion of efficient multicore-oblivious

algorithms, that is, algorithms that do not use specific values for multicore parameters such

5

as number of cores and cache levels, cache sizes and block lengths, etc., and yet perform

efficiently across a wide variety of multicores.

To address this challenge, we propose some simple enhancements to HM algorithms in the

form of instructions or hints in the algorithm that are meant to be interpreted and used by

the run-time scheduler to decide how to schedule parallel tasks generated during execution.

Our initiative to introduce these special instructions for the run-time scheduler is in the spirit

of the recent trend towards multiresolution languages [19], where the basic programming

language is enhanced with constructs that can be used by the savvy programmer to enhance

performance. It appears that some mechanisms of this type are needed in order to extract

efficient performance of algorithms on multicores with multiple levels of caches.

The multicore-oblivious algorithms introduced in this paper use two main types of schedul-

ing hints, namely, CGC (coarse-grained contiguous) and SB (space-bound), and a third one

that combines these two (CGC⇒SB). Among these, CGC is useful for computations involving

parallel pfor loops, while SB and CGC⇒SB are useful for algorithms that recursively spawn

parallel tasks. These scheduling hints do not make use of the HM parameters, and thus are

oblivious of those parameters.

The remaining part of the section is organized as follows: Section 3.1 introduces some

notation; then Sections 3.2, 3.3 and 3.4 describe the CGC, SB and CGC⇒SB schedulings,

respectively.

3.1. Preliminaries

The space bound s(τ) of a task τ is an upper bound on the space required by τ , and

includes the space used by τ ’s subtasks. The aggregate space bound of two tasks τ1 and τ2

is s(τ1) if τ2 is a descendant subtask of τ1, s(τ2) if τ1 is a descendant subtask of τ2, and

s(τ1) + s(τ2) otherwise.

A task τ is said to be anchored to a level-i cache λi, with 1 ≤ i ≤ h, if λi is large enough

to meet the space requirement of τ (i.e., s(τ) ≤ Ci), and τ and all its subtasks are executed

by cores in the shadow of λi. A task can be anchored to only one cache at any given time,

though more than one cache can satisfy the space requirement. In contrast, many tasks can

be anchored to a a given cache λi assuming that the aggregate space bound does not exceed

Ci.

Each cache λi, for each 1 ≤ i ≤ h, is associated with a queue Q(λi) containing tasks

waiting to be anchored to λi. When a task anchored to λi ends or a new task is inserted

into Q(λi), the run-time support dequeues tasks from Q(λi) and anchors them to λi until

the aggregate space bound is satisfied or the queue is empty. (Note that an hint may apply

different dequeue policies to the queue.) A task anchored to λi can be executed by any core

in the shadow of λi unless specified otherwise by the scheduling hints.

3.2. Coarse-Grained Contiguous Scheduling

The coarse-grained contiguous (CGC) scheduling distributes an ordered collection of par-

allel fine-grained subtasks in contiguous chunks across a sequence of contiguous cores. In

6

MO-MT(A, n)
Input: an n× n matrix A in row-major order.
Output: the transpose AT in row-major order.

1: [CGC] pfor 0 ≤ z ≤ n2 − 1 do
2: (i, j) = β(z);
3: AT [j, i] := A[i, j];

Figure 2: MO-MT: a multicore-oblivious matrix transposition algorithm.

particular, CGC is used to decompose a parallel pfor loop acting on a contiguous chunk of

data into segments, each of which is executed by a core in parallel to others.1

Suppose τ is a task anchored to a level-k cache λk, with 1 ≤ k ≤ h, and forks a collection

of m parallel subtasks, indexed by a variable t running from 1 to m. Then, CGC decomposes

the values taken by t into p′k contiguous segments of the same or almost the same length, and

tasks in the j-th such segment are inserted into queue Q(λj1), where λj1 denotes the level-1

cache of the j-th core in the shadow of λk, for each 1 ≤ j ≤ p′k. The scheduler ensures

that each segment, but one, contains at least B1 subtasks, in order to respect cache block

boundaries and reduce cache complexity by avoiding ping-ponging of blocks among caches.

In the next two sections, we exercise the CGC scheduling by deriving multicore-oblivious

algorithms for matrix transposition and prefix sum.

3.2.1. Matrix Transposition

Figure 2 gives a multicore-oblivious algorithm for transposing an n × n matrix A based

on the network-oblivious algorithm in [4] and scheduled with CGC. We denote with A[i, j],

0 ≤ i, j < n, the entry of A in the i-th row and the j-th column. For the sake of simplicity, we

assume n to be an even power of two. Intuitively, the algorithm scans entries in A according

to the Z-Morton layout, and put them in their final positions in AT . We denote by β(z),

0 ≤ z < n2, the ordered pair of integers (i, j) whose bitwise interleaving gives the binary

representations of z, that is, the entry of A in the z-th position according to the Z-Morton

layout. More specifically, let (z)2 = z2r−1z2r−2 · · · z1z0 be the binary representations of z,

with r = log n; then i and j are the integers whose binary representations are obtained by

extracting from z the bits in even and odd locations, respectively, i.e., (i)2 = z2r−2 · · · z2z0
and (j)2 = z2r−1 · · · z3z1. We assume that β(z) is computed in constant time by the hardware.

Theorem 1. MO-MT correctly transposes the n × n matrix A in O
(
n2/p+B1

)
parallel

time and O
(
n2/(qiBi) + p′iB1/Bi

)
cache misses at each level-i cache, for all 1 ≤ i ≤ h − 1,

assuming ci = Θ
(
(Bi/Bi−1)2

)
. This result is optimal when n = Ω

(√
B1p

)
.

Proof. The algorithm is correct since each entry of A is touched and moved to the correct posi-

tion in AT . The parallel time of the algorithm follows since each core performs O
(
n2/p+B1

)
1With a slight abuse of notation, in the description of CGC hint, we use the notions of anchored task and

of queue, although CGC does not require task space bounds. Formal definitions of these terms which do not
make use of space bounds are straightforward.

7

iterations of the loop. We will now describe a cache replacement strategy that guarantees

O
(
n2/(qiBi) + p′iB1/Bi

)
cache misses at each level-i cache. Since the HM model uses an

optimal cache replacement policy, it will never incur more cache misses than those incurred

by our strategy. By hypothesis we have cl+1 = Θ (Bl+1/Bl)
2
, for any 1 ≤ l < h − 1, and

C1 = Ω
(
B2

1

)
: then, it follows by induction on l that Cl = Ω

(
p′lB

2
l

)
. So, let us assume that

in each λl our replacement policy reserves Θ (Bl) cache blocks for each core in the shadow of

λl. We now bound the number of misses at level-l, for each 1 ≤ l < h, incurred by a core

while performing bl consecutive iterations of the loop, where bl is the biggest even power of

two not larger than B2
l . In the bl iterations the z value assumes O (1) configurations in the

2 log n − log bl most significant bits, and then the algorithm reads bl entries of A contained

into O
(√
bl
)

blocks of size Bl. Similarly for AT . Hence, a core performing bl iterations

incurs O (Bl) misses at level-l by exploiting the Θ (Bl) reserved cache blocks. Since each

core performs max{n2/p,B1} iterations and p′l = p/ql cores share the same level-l cache,

the cache complexity at level l is O
(
(n2/p+B1)p′l/Bl

)
= O

(
n2/(qlBl) +B1p

′
l/Bl

)
. Simple

lower bounds for time and cache complexities are Ω
(
n2/p

)
and Ω

(
n2/(qlBl)

)
, respectively,

and hence the algorithm is optimal when n2 = Ω (B1p).

We observe that the assumptions on the cache hierarchy required in Theorem 1 (e.g.,

p ≤ n2/B1 and ci = Θ
(
(Bi/Bi−1)2

)
) are in general satisfied by common multicores [20].

In the following Section 3.3 we describe another multicore-oblivious algorithm for matrix

transposition which uses the SB hint and is built on the classical cache-oblivious algorithm.

3.2.2. Prefix sums

We now describe an optimal multicore-oblivious algorithm for computing the prefix sums

of n values. Consider a sequence (x0, x1, . . . , xn−1) of n elements taken from a set S with an

associative binary operation ∗. We define the i-th partial sum si of such a sequence to be

si = x0 ∗ x1 ∗ · · · ∗ xi, for each 0 ≤ i < n. For simplicity, we assume n to be a power of two.

We show that the recursive algorithm in [21] exhibits optimal performance using the CGC

scheduling. The algorithm is described in Figure 3, where we suppose n to be a power of two

for the sake of simplicity: at a high level, elements are added in pairs, the resulting problem

is recursively solved, and then this solution is extended to the remaining summands.

Theorem 2. MO-PS correctly computes the prefix sums of n entries in O (n/p+B1 log p)

parallel time and O (n/(qiBi) + (piB1/Bi) log p) cache misses at each level-i cache, for all

1 ≤ i ≤ h− 1. This result is optimal when n = Ω (B1p log p).

Proof. The correctness of this algorithm can be proved by induction as shown in [22]. We

now analyze its performance. The CGC scheduler assigns contiguous blocks of elements to

contiguous processors and requires that at most one core is given less than B1 units of data,

even if this requires some processors to be idle. In Step 2 and Steps 4–7, we have O (n)

elementary operations to distribute across the min(p, bn/B1c) consecutive cores which the

CGC scheduling assigns tasks to. As each recursive stage decreases the size of the input by

8

MO-PS(x0, x1, . . . , xn−1)
Input: sequence (x0, x1, . . . , xn−1) of summands with associative binary operator ∗.
Output: sequence (s0, s1, . . . , sn−1) of partial sums.

1: if n = 1 then s0 := x0; return; (s0) endif
2: [CGC] pfor 0 ≤ i ≤ (n/2− 1) do yi := x2i ∗ x2i+1 end pfor
3: (z0, z1, . . . , zn/2−1) := MO-PS(y0, y1, . . . , yn/2−1)
4: [CGC] pfor 0 ≤ i ≤ n− 1
5: if i is even then si := zi/2−1 ∗ xi
6: else si := z(i−1)/2 endif
7: end pfor
8: return (s0, s1, . . . , sn−1)

Figure 3: MO-PS: a multicore-oblivious algorithm for prefix sums.

a factor of two, the number of processors the CGC scheduler assigns tasks to decreases by a

factor of two as well whenever n ≤ pB1. Then, the running time T (n, p) is upper bounded by

the following recurrence relation:

T (n, p) =


T (n/2, p) +O (n/p) n > pB1

T (n/2, p/2) +O (n/p) B1 < n ≤ pB1

O (n) n ≤ B1

This recurrence solves to O (n/p+B1 log p), which is optimal as soon as n = Ω (B1p log p).

Next, we analyze the level-i cache complexity of this algorithm. Each recursive call incurs

O (n/(qiBi)) misses at level-i when n > pB1. When p′iB1 < n ≤ pB1, each level-i cache

receives O (p′iB1) entries and thus there are O (p′iB1/Bi) cache misses at level-i. Finally,

when n ≤ p′iB1, the problem can be contained in a level-i cache and there are O (p′iB1/Bi)

misses. Then, the cache complexity Qi(n, p) at level-i is upper bounded by the following

recurrence relation:

Qi(n, p) =


Qi(n/2, p) +O (n/(qiBi)) n > pB1

Qi(n/2, p/2) +O (p′iB1/Bi) p′iB1 < n ≤ pB1

O (p′iB1/Bi) n ≤ p′iB1

This recurrence solves toO (n/(qiBi) + (p′iB1/Bi) log qi), which is optimal when n = Ω (B1p log p).

We note that these complexity bounds also apply to every algorithm which recursively

solves a problem by a scan of the data at each level of recursion and then solving a geomet-

rically smaller subproblem all the way down to a constant size.

3.3. Space-Bound Scheduling

The space-bound (SB) scheduling requires an algorithm to supply an upper bound on the

space used by each task that is forked during the computation. In particular, the SB schedul-

ing is applied to recursively forking tasks where a constant number of tasks are generated at

9

MO-MT2(A,B, n)
Input: n× n matrices A and B in row-major order.
Output: the transpose AT stored in row-major order stored in B.
Space Bound: 2n2.

1: if n = 1 then B = A; return; endif
2: Partition A (B, resp.) into four quadrants Ai,j (Bi,j , resp.), i, j ∈ {1, 2};
3: [SB] pfor 1 ≤ i, j ≤ 2 do MO-MT2(Ai,j , Bj,i, n/2);

Figure 4: MO-MT2: a multicore-oblivious matrix transposition algorithm using the SB hint.

each fork, each with a space bound that is a constant factor smaller than that of the forking

task. Intuitively, if all subtasks generated by a task τ anchored to a level-i cache λ are an-

chored only to caches under the shadow of λ, then the total number of level-i cache misses

incurred by τ can be upper bounded by those needed to read in the initial input to λ once

and write out the final output from λ once.

As already mentioned in Section 3.1, each level-k cache λk maintains a queue Q(λk) for

tasks with space bound in (Ck−1, Ck] which are to be executed under the shadow of λk. When

the current task assigned to λk completes, a task τ from Q(λk) is extracted and executed while

anchored at λk. When τ forks a task τ ′ and s(τ ′) ≤ Ck−1, τ ′ is assigned to the least loaded

cache under the shadow of λk at the smallest level j < k such that s(τ ′) ≤ Cj , otherwise it is

inserted into Q(λk).

In the subsequent section we apply the SB scheduler to the recursive cache-oblivious

algorithm for matrix transposition given in [1] and to the aforementioned recursive algorithm

for prefix sums. Furthermore, in Section 5, we show that the SB hint can be successfully

applied to derive a multicore-oblivious algorithm for the GEP paradigm.

3.3.1. Matrix Transposition and Prefix Sums with SB

In Section 3.2.1 we showed how to implement matrix transposition using the CGC hint.

For the sake of completeness we present a multicore-oblivious algorithm, named MO-MT2,

which uses the SB scheduling hint and is based on the cache-oblivious algorithm in [1]. Figure 4

provides the pseudocode of the algorithm. We have the following theorem.2

Theorem 3. MO-MT2 correctly transposes the n× n matrix A in O
(
n2/p+ log n

)
parallel

time and O
(
n2/(qiBi)

)
cache misses at each level-i cache, for all 1 ≤ i ≤ h − 1, when

Cj ≥ c · pj · Cj−1 for some constant c > 1 and 2 ≤ j ≤ h− 1, and C1 ≥ maxh−1j=1 {pj}.

Proof. Correctness follows from [1]. Let ri be the smallest integer such that a subproblem

of size n/2ri × n/2ri fits into a level-i cache, for each 1 ≤ i ≤ h − 1. Since the space bound

is 2n2 for an n × n input, we have ri = d 12 log(2n2/Ci)e. There are Θ (4ri) subproblems of

size n/2ri × n/2ri each, and an equal number of them will be anchored to each of the qi

2In the paper we denote the quadrants of a matrix A as: A11 (top-left), A12 (top-right), A21 (bottom-left),
A22 (bottom-right).

10

MO-PS2(x0, x1, . . . , xn−1)
Input: sequence (x0, x1, . . . , xn−1) of summands with associative binary operator ∗.
Output: sequence (s0, s1, . . . , sn−1) of partial sums.
Space Bound: 2n.

1: if n = 1 then s0 := x0; return (s0) endif
2: parallel spawn
3: [SB] (s0, s1, . . . , sn/2−1) := MO–PS2(x0, x1, . . . , xn/2−1)
4: [SB] (sn/2, sn/2+1, . . . , sn−1) := MO–PS2(xn/2, xn/2+1, . . . , xn−1)
5: end parallel spawn
6: [SB] MO–D&C–ADD((sn/2, sn/2+1, . . . , sn−1), sn/2−1)3

7: return (s0, s1, . . . , sn−1)

Figure 5: MO-PS2: a multicore-oblivious algorithm for prefix sums using SB hint.

level-i caches. When such a subproblem is anchored to a level-i (i > 1) cache it is decom-

posed into Θ (4ri−1/4ri) subproblems of size n/2ri−1 × n/2ri−1 each in time Θ (4ri−1/4ri).

Hence, the total parallel time spent in decomposing level-i subproblems into level-(i− 1) sub-

problems is Θ ((4ri/qi)× (4ri−1/4ri)) = Θ (4ri−1/qi) = Θ
(
n2/ (qiCi−1)

)
= O

(
n2/

(
pci−2

))
as qiCi−1 =

(
p/
∏j=i
j=2 pj

)
Ci−1 ≥ (p/pi) c

i−2C1 ≥ pci−2. Finally, there are 4r1 subproblems

of size n/2r1 × n/2r1 each. Each such subproblem is solved by a single processing core in

Θ
(
n2/4r1

)
sequential time, and each core solves an equal number of them. Hence, adding

the Θ (log n) critical pathlength of MO-MT2 due to the size of the input, the overall par-

allel running time of MO-MT2 is O
(∑h

i=2

(
n2/

(
pci−2

))
+ (4r1/p)×

(
n2/4r1

)
+ log n

)
=

O
(
n2/p+ log n

)
.

We now upper bound the number of cache misses incurred by MO-MT2 at a level-i

cache λi, for 1 ≤ i ≤ h − 1. In order to obtain this bound we only need to consider

the cache misses incurred by the tasks anchored to that cache. Only subproblems of size

n/2ri × n/2ri are anchored to λi, and each such subproblem incurs O (Ci/Bi) cache misses

at λi. Since Θ
(

4r
i

/qi

)
= Θ

(
n2/ (qiCi)

)
such subproblems are anchored to λi over the ex-

ecution of the entire algorithm, the number of cache misses incurred by MO-MT2 at λi is

O
(
(n2/ (qiCi) (Ci/Bi)

)
= O

(
n2/ (qiBi)

)
.

Section 3.2.2 showed an implementation of parallel prefix sums using the CGC hint. Fig-

ure 5 shows how to find prefix sums multicore-obliviously using a classic parallel divide-and-

conquer algorithm with SB hint. The following theorem gives the performance bounds of the

algorithm. The proof is somewhat similar to that of Theorem 3, and hence has been omitted.

Theorem 4. MO-PS2 correctly computes the prefix sums of n entries in O (n/p+ log n)

parallel time and O (n/(qiBi)) cache misses at each level-i cache, for all 1 ≤ i ≤ h− 1, when

Cj ≥ c · pj · Cj−1 for some constant c > 1 and 2 ≤ j ≤ h− 1, and C1 ≥ maxh−1j=1 {pj}.

3In the pseudocode MO–D&C–ADD((v0, . . . vn), v) is a multicore-oblivious algorithm that adds the term
v to each term of the sequence (v0, . . . vn) by recursively subdividing the sequence. We omit its simple
pseudocode.

11

3.4. CGC on SB Scheduling

The CGC⇒SB scheduling is useful in algorithms that recursively fork a large number of

parallel tasks. Informally, under CGC⇒SB, an ordered collection of subtasks forked from a

task are distributed in a CGC manner across caches at a suitable lower level where the cache

size is large enough to accommodate each subtask’s space bound and at the same time, the

parallelism is fully exploited. We now specify the mechanism of this scheduler.

Let τ be a task anchored to a level-k cache λk, with 1 ≤ k ≤ h, which recursively spawns a

collection of m parallel subtasks, indexed by a variable t running from 1 to m. For simplicity

of exposition let us assume that all generated subtasks have the same space bound σ. The

CGC⇒SB scheduler finds the smallest level-i with Ci ≥ σ. If i = k then all tasks are anchored

to λk. Suppose i < k. The hint then decomposes the values taken by t into pk,i = Πk
j=i+1pj

contiguous segments such that each segment uses at least Bi space 4. Then, tasks in the j-th

such segment are inserted into the task queue Q(λji), where λji denotes the j-th level-i cache

in the shadow of λk, for each 1 ≤ j ≤ pk,i.
We remark that SB is more concerned with load balancing while CGC⇒SB is more about

retaining cache locality: indeed, CGC⇒SB assigns consecutive numbered subtasks, which are

unlikely to access data stored in relatively remote locations in memory, to consecutive caches;

on the other hand, the SB scheduling may assign consecutive subtasks to nonconsecutive

caches, reducing cache locality. Furthermore, differently from CGC, CGC⇒SB may anchor

subtasks to level-i caches with i > 1. We note that CGC and SB can be viewed as special cases

of CGC⇒SB, and algorithms scheduled with CGC and SB can be executed under CGC⇒SB

without degrading their asymptotic performance.

Below, we apply the CGC⇒SB scheduling for deriving multicore-algorithms for the Fast

Fourier Transform, sorting and sparse-matrix dense-vector multiplication.

3.4.1. Fast Fourier Transform (FFT)

The discrete Fourier transform (DFT) of a vector X of n complex numbers is given by

another complex vector Y of the same length, where Y [i] =
∑

0≤j<nX[j] · ω−ijn for 0 ≤
i < n, and ωn = e2π

√
−1/n. In Figure 6, we present MO-FFT, obtained by adapting the

cache-oblivious FFT algorithm in [1] to the HM model. MO-FFT can also be viewed as

an adaptation of the network-oblivious FFT algorithm given in [4]. We use two types of

scheduling in MO-FFT: CGC and CGC⇒SB. The following theorem gives the performance

bounds of MO-FFT in the HM model.

Theorem 5. MO-FFT correctly computes the FFT of n values in O ((n/p) log n) parallel

time and O
(
(n/ (qiBi)) logCi

n
)

cache misses at each level-i cache, for all 1 ≤ i ≤ h−1, when

n > Ch−1, Ci > 12p′i+1
2

and ci+1 = Θ
(
(Bi+1/Bi)

2
)
.

4Since Bj ≤ pjBj−1, if CGC⇒SB ensures at least Bi space usage at each level-i cache under the shadow
of λk, then for i < j < k, at least Bj space usage is ensured at every level-j cache under λk’s shadow.

12

MO-FFT(X,n)
Input: A vector X of length n = 2k for some integer k ≥ 0.
Output: In-place FFT of X.
Space Bound: S(n) = 3n.

1: if n is a small constant then compute FFT using the direct formula and return.

2: Let n1 = 2d
k
2
e and n2 = 2b

k
2
c (observe that n1 ∈ {n2, 2n2}), and let A be an n1 × n2

matrix stored in row-major order.
3: [CGC] pfor 0 ≤ i < n1, 0 ≤ j < n2 do A[i, j] := X[i · n2 + j]
4: [CGC] MO-MT(A,n1). (When n1 = 2n2, the matrix is computed by splitting the

matrix into two square matrices and then invoking MO-MT twice.)
5: [CGC⇒SB] pfor 0 ≤ i < n2 do MO-FFT(A[i, 0 . . . (n1 − 1)], n1)
6: [CGC] Multiply the n entries of A by appropriate twiddle factors
7: [CGC] MO-MT(A,n1)
8: [CGC⇒SB] pfor 0 ≤ i < n1 do MO-FFT(A[i, 0 . . . (n2 − 1)], n2)
9: [CGC] MO-MT(A,n1)

10: [CGC] Copy the n entries of A into X

Figure 6: MO-FFT: multicore-oblivious in-place FFT.

Proof. We first upper bound the parallel time. Consider a task MO-FFT(X ′, n′) generated

during the recursive evaluation of MO-FFT(X,n), where n′ = 2k
′

for some integer k′ > 0.

Suppose this task is anchored to a level-i cache λi. Then Ci ≥ S(n′) > Ci−1 ⇒ 3n′ > 12p′i
2 ⇒

min{n′1, n′2} > p′i, where n′1 = 2d
k′
2 e and n′2 = 2b

k′
2 c. Hence, MO-FFT(X ′, n′) will generate

enough subtasks to keep all cores under λi busy, and assuming h to be a constant the work

performed by any two cores in the shadow of λi will be within a constant factor of each other5.

Consequently, the parallel running time of MO-FFT(X,n) will be O (T1(n)/p+ T∞(n)) =

O ((n/p) log n), where T1(n) = O (n log n) and T∞(n) = O (log n) denote the sequential time

and the critical pathlength of MO-FFT, respectively. The parallel time is clearly optimal.

In order to compute the cache complexity of MO-FFT, consider any level-i cache λi.

Cache-misses at λi are due to the CGC operations of tasks anchored to higher levels and to

misses for reading and writing data of tasks anchored to a level-i cache. Starting with an

input of size n, logCi
n levels of recursion are needed until the input becomes small enough to

fit into λi. At each of these levels O (n/ (qiBi)) cache-misses are incurred by the algorithm

at λi, and no additional cache-misses are incurred once the data fits into the cache. Thus the

total number of cache-misses at λi is O
(
(n/ (qiBi)) logCi

n
)
. The optimality of this bound

follows from a straight-forward extension of the cache-miss lower bound proved in [17] for the

computation DAG of MO-FFT on a two-level multicore model to the multi-level model.

3.4.2. Sorting

5More specifically, if Ci > 12αp′i+1
2 for some α ≥ 1, then no core will perform more than a factor of(

1 + 1√
α

)h
more work than any other core.

13

MO-MS(L, r,m,L)
Input: A set of r sorted lists L = {L1, · · · , Lr},where m =

∑r
i=1 |Li|, with m ≤ r6. For

convenience we assume that all elements are distinct.
The sorting algorithm SPMS, on input A[1..n], calls MO-MS(L, n, n, L), where L =
{A[1], · · · , A[n]} to compute the desired sorted sequence.
Output: The list L containing the elements in L in sorted order.
Space Bound: S(m) = cm, for a suitable constant c.

1: if m is a small constant then compute MO-MS using an O(m logm) sorting algorithm
and return.

2: [SB] Partition the input merging problem M = (L, r,m,L) into k = O(m/r2) disjoint
merging problemsM1, · · · ,Mk such that for eachMi = (Li, ri,mi, Li): mi ≤ r3, ri ≤ r,
and all elements in Li are smaller than any element in Mi+1, for 1 ≤ i ≤ k − 1.

3: [SB] pfor 1 ≤ i ≤ k do Group the lists inMi into disjoint sets of O(
√
r) lists. Let there

be ki such groups Gi,j , 1 ≤ j ≤ ki, where the jth group has ri,j lists (with ri,j = O(
√
r)),

and mi,j equals the number of elements in these rj lists. Note that each group Gi,j is a
valid input to MO-MS of size O(

√
m).

4: [SB] Perform the u-tree computation on the sizes of the sequence of groups Gi,j , 1 ≤ i < k,
1 ≤ j ≤ ki, to obtain a balanced collection of MO-MS tasks Hj , j = 1, 2, · · · .

5: [CGC⇒SB] Call MO-MS on the sequence of tasks Gi,j by using the tasks Hj to achieve
parallelism with the same space-bound for all subtasks. Let the resulting output sequence
of sorted lists be Gi,j , 1 ≤ i < k, 1 ≤ j ≤ ki. Note that the group Gi, consisting of the ki
sorted lists Gi,j , 1 ≤ j ≤ ki, is a valid input to MO-MS of size O(r3).

6: [SB] Perform the u-tree computation on the sizes of the sequence of groups Gi, 1 ≤ i ≤ k,
to obtain a balanced collection of MO-MS tasks H′j , j = 1, 2, · · · .

7: [CGC⇒SB] Perform MO-MS on the tasks Gi in parallel by using the tasksH′j to achieve
the same space-bound for all subtasks (similar to Step 5). Let the sequence of output
sorted lists be Gi, 1 ≤ i ≤ k.

8: [CGC] (or [SB]) Return the concatenation of G1 followed by G2, · · · , Gk

Figure 7: MO-MS: multicore-oblivious multi-merge, used in the sorting algorithm SPMS.

Sample Partition Merge Sort (SPMS) is a resource-oblivious algorithm for sorting on a

multicore with just private caches [17]. It is shown in [17] that on an input of length n, SPMS

runs in O(n log n) sequential time with O((n/B) logC n) cache misses, that it has critical

pathlength O(log n log log n), a linear space bound for all tasks, and that it can be scheduled

with optimal cache miss cost on a multicore with private caches. SPMS is resource-oblivious

in that it does not contain machine parameters, and further, it can be scheduled efficiently

(for private caches) by a variety of schedulers that also do not know the machine parameters,

as long as the number of sequential task fragments scheduled across the cores is small. It is

also shown in [17] that SPMS performs well even in the presence of false-sharing under an

unknown block size B1, but this is not needed for our results here.

Let the input array be A[1..n], and let L = {A[1], · · · , A[n]}. SPMS sorts the array A

with a call to MO-MS(L, n, n, L), where the algorithm for MO-MS is given in Figure 7. In

general, MO-MS takes as input a set of r sorted lists L = {L1, · · · , Lr},where m =
∑r
i=1 |Li|,

with m ≤ r6. For convenience we assume that all elements are distinct.

While more complex than MO-FFT, MO-MS has the same structure, except that the

CGC steps in MO-FFT that use MO-MT and other parallel computations with O(1) critical

14

pathlength, are instead replaced by a constant number of applications of prefix sums and other

balanced parallel computations (‘BP’ computations) [17]. In [17], these BP computations are

formulated as binary forking computations that map naturally into SB scheduling (though

many of them can also be re-formulated to be scheduled under CGC). We will follow the

constructs in [17], and use the SB scheduling hint for all BP computations. The other new

feature in MO-MS (relative to MO-FFT) is that the recursive sub-tasks are not guaranteed to

have sizes that are within a constant factor of each other, though they are all of size O(r3). In

order to achieve similar sizes for parallel tasks that solve these sub-problems, SPMS calls the

‘u-tree’ computation, which is a BP computation that packages the parallel recursive calls into

approximately equal-sized sub-computations. We give a high-level description of the steps in

MO-MS below. Further details on these steps can be found in [17].

In Step 2, the algorithm MO-MS deterministically samples the r sorted lists, sorts the

samples, and uses the sorted list of sample points to partition the input set of lists into

O(m/r2) disjoint and linearly-ordered merging problems. Since each of these newly created

merging subproblems can contain many more lists in relation to the total size than the ideal

size for MO-MS, the merging of these lists is done in two stages: in Step 5, the lists are

grouped (arbitrarily) in groups of O(
√
r) lists, which is a suitable number of lists for the size

of the problem, and each such subcollections of lists is combined into a single sorted list by a

call to MO-MS. Then in Step 7, for each index i, the collection of output lists from Step 5 is

combined into a sorted list by a call to MO-MS.

Step 2 consists of several calls (though a constant number) to computations with the same

structure as space-bounded prefix sums and space-bounded matrix transposition. Thus the

bounds derived for those algorithms apply to Step 2. Steps 3 and 8 are very simple steps that

group consecutive elements together, and can be performed efficiently with either CGC or

SB. As mentioned earlier, Steps 4 and 6 are needed because the recursive sub-tasks generated

by MO-MS are not guaranteed to have sizes that are within a constant factor of each other,

though they are all of size O(r3). In order to achieve similar sizes for parallel tasks that

solve these sub-problems, the SPMS algorithm in [17] calls the ‘u-tree’ computation, which

packages the parallel recursive calls into approximately equal-sized computations. By calling

the same u-tree computation in MO-MS, we obtained tasks of similar sizes, which can then

be scheduled in the same way as the CGC⇒SB steps in the FFT algorithm.

Due to the similarity in the structure of MO-MS and MO-FFT, the results for MO-

FFT under our scheduler translate to SPMS. However, the critical pathlength increases from

O(B1 log n) to O(B1 log n log log n) due to the BP computations that use prefix sums and

related computations; these have O (B1 log n) critical pathlength instead of the constant depth

MO-MT used in MO-FFT. This gives us the following result.

Theorem 6. The multicore-oblivious algorithm MO-MS terminates in O ((n/p) log n+B1 log n log log n)

parallel time, and incurs O
(
(n/(qiBi)) logCi

n
)

cache misses at each level-i cache, for all

1 ≤ i ≤ h− 1, provided all caches are tall and n ≥ Ch−1.

The cache-miss bound stated in Theorem 6 is optimal, and this can be established by ex-

15

MO-SpM-DV((Av, A0), x; y; k1, k2)
Input: A row-major representation (Av, A0) of a sparse n × n matrix A, and a vector
x of length n. In (Av, A0), Av is a vector of all non-zero elements A[i, j] of A sorted in
lexicographically non-decreasing order of 〈i, j〉, and each element A[i, j] is stored as an ordered
pair 〈j, A[i, j]〉. Each entry A0[i] of vector A0 contains the starting location of row i in Av
with A0[n+ 1] containing n+ 1.
Output: Computes y[k1 . . . k2], where y is a vector of length n containing the product Ax.
Space Bound: S(m) = 4m, where m = k2 − k1 + 1.

1: if k1 = k2 then
2: y[k1] := 0
3: for k := A0[k1] to A0[k1 + 1]− 1 do

〈j, a〉 := Av[k], y[k1] := y[k1] + a× x[j]
4: else
5: k := b(k1 + k2)/2c
6: [CGC⇒SB] parallel: MO-SpM-DV((Av, A0), x; y; k1, k),

MO-SpM-DV((Av, A0), x; y; k + 1, k2)

Figure 8: MO-SpM-DV: multicore-oblivious sparse matrix and dense vector multiplication.

tending to multi-level caches, the cache-miss lower bound observed in [17] for any comparison-

based sorting algorithm on a two-level multicore model.

Finally, we note that if SPMS is executed on an input of size m ≤ qiCi, then the cache

complexity at level-i is O
(
(m/ (qiBi)) logri m

)
, where ri = min{Ci,m/qi}. This fact is used

in the MO-LR algorithm in Section 6.

3.4.3. Sparse Matrix Dense Vector Multiplication (SpM-DV)

In this section we show that CGC⇒SB efficiently schedules the separator-based sparse

matrix dense vector multiplication algorithm given in [10], provided the matrix has a support

graph with good separators. A class of graphs closed under the subgraph relation is said to

satisfy a f(n)-edge separator theorem if there exist constants α ∈ [1/2, 1) and β > 0 such that

every n-node graph G from the class can be partitioned into two vertex-disjoint subgraphs

containing at most αn vertices each and with no more than βf(n) edges of G crossing the

partition [23]. The support graph GA of an n × n matrix A is defined to be the graph with

vertex set {1, . . . , n} and edge set {(i, j)|A[i, j] 6= 0}. We say that A satisfies an f(n)-edge

separator theorem if its support graph satisfies such a theorem. A separator tree of A, denoted

by TA, is constructed by applying the separator theorem to the whole support graph to get

two components, and then recursively applying the theorem to each component until only a

single node remains at each leaf of the tree. The pseudocode of MO-SpM-DV is provided in

Figure 8.

As in [10], we assume that the rows and columns of the matrix A input to MO-SpM-DV

are reordered based on the left to right ordering of leaves in its separator tree which leads to

the following theorem proved in the full paper.

Theorem 7. Any n× n sparse matrix A satisfying an nε-edge separator theorem with ε < 1

can be reordered so that when executed on an h-level HM model with p cores MO-SpM-DV ter-

16

minates in O (n/p+B1 + log (n/B1)) parallel steps, and incurs O
(
(n/qi)

(
1/Bi + 1/C1−ε

i

))
cache misses at each level-i cache, for all 1 ≤ i ≤ h− 1, provided n ≥ Ch−1.

Proof. It is not difficult to see that under the CGC⇒SB scheduler each task anchored at C1

will have space bound Ω (B1) (since n ≥ Ch−1 ≥ p · C1 ≥ p · B1), and that at each level i

cache λ, Θ (n/(qiCi)) tasks will be anchored whose parents have space bound too large for λ.

Once such a task τ is anchored to λ all its descendant subtasks will be executed completely

under the shadow of λ. Hence, the total number of cache misses incurred at λ will be the

sum of the cache misses incurred by these tasks at λ. Since the space bound of τ is 4m,

where m is the length of the segment of y computed by τ , clearly, Ci/8 < m < Ci/4. Let

the starting and the ending index of y assigned to τ be k1 and k2, respectively. Now if

we load a segment of x of length 2m centered at index (k1 + k2)/2, then for each index

j ∈ [k1, k2], the entire subtree Tj of TA with leaves spanning indices [j − m/2, j + m/2]

will be in λ. When the algorithm is at row k consider a non-zero element A[k, j] causing

a read of x[j] which corresponds to an edge (k, j) in GA. If j is within Tj , then x[j] is a

cache hit, otherwise it may incur a cache miss. However, according to the edge separator

theorem, only O (mε) such misses can occur. Observe that O (m/Bi) additional cache misses

will be incurred for loading y, Av, Ao, and x [(k1 + k2)/2−m, . . . , (k1 + k2)/2 +m] into λ.

Hence, τ will incur O (m/Bi +mε) = O (Ci/Bi + Ci
ε) cache misses. Therefore, Qi(n) =

O (n/(qiCi) · (Ci/Bi + Ci
ε)) = O

(
(n/qi) ·

(
1/Bi + 1/C1−ε

i

))
.

Since the scheduler distributes the tasks across cores evenly, each row of A has at most

a constant number of non-zero entries, and the computation has a critical pathlength of

O (B1 + log (n/B1)), the O (n/p+B1 + log (n/B1)) parallel running time of the algorithm fol-

lows immediately. Since the total work is Ω (n), the speed-up is optimal for p ≤ n/(B1 + log (n/B1)).

4. Review of Network-Obliviousness

The notion of obliviousness in distributed-memory platforms is explored in [4], which

introduces the following framework for the design and analysis of algorithms which perform

efficiently across a wide class of parallel machines with differing computing and communication

characteristics, without mentioning machine parameters in their specifications. A network-

oblivious algorithm is designed in an abstract model, denoted with M(N), independent of

machine parameters; then, its performance is analyzed in a model, named M(p,B), featuring

two parameters characterizing parallelism and interconnection network. The above frame-

work is interesting since optimality of the network-oblivious algorithm in M(p,B) for wide

parameter ranges implies optimality on the Decomposable BSP (D-BSP) model [24, 25] which

effectively describes the platforms on which we expect the network-oblivious algorithm to be

actually executed [26]. An in-depth coverage of the framework is also provided in [27, 28, 29].

More in details, a network-oblivious algorithm A is an algorithm designed for the M(N)

model, where N is a suitable function of the input size and represents the maximum number

17

of processors for which the computation is designed. An M(N) is a complete network of N

processing elements (PEs) each consisting of a CPU and an unbounded local memory. A
consists of a sequence of synchronous supersteps: in a superstep a PE performs operations

on local data and sends messages to other PEs. The complexity of A is then evaluated by

executing the algorithm on the M(p,B) model. The M(p,B), where p ≤ N and B ≥ 1, is an

M(p) whose PEs are called processors and where messages exchanged between two processors

in a superstep can be envisioned as traveling within blocks of fixed size B. A network-oblivious

algorithm can be naturally executed on M(p,B) for every p ≤ N and B by stipulating that

each processor carries out the operations of N/p consecutive PEs. The communication (resp.,

computation) complexity of A is the sum over all supersteps of the maximum number of blocks

sent/received (resp., operations performed) by a processor in each superstep.

Under some reasonable assumptions, network-oblivious algorithms with optimal com-

munication complexity on any M(p,B) exhibit optimal communication time on a variant

of the D-BSP model, denoted as D-BSP(P, g,B), where g = (g0, . . . , glogP−1) and B =

(B0, . . . , BlogP−1). A D-BSP is essentially an M(P, ·) machine where processors are recur-

sively partitioned into 2i clusters of size P/2i for each 0 ≤ i < logP . The communication cost

of a superstep s, where each processor communicates with processors within its cluster of size

2i, is defined to be hsgi, where hs is the maximum number of blocks of size Bi sent/received

by a processor during s on M(P,Bi).

Network-oblivious algorithms for matrix multiplication and transposition, FFT, and sort-

ing are provided in [4]. The network and multicore-oblivious approaches have strong connec-

tions: indeed, other than sorting and SpM-DV, the multicore-oblivious algorithms in Section

3 are all adapted from network-oblivious algorithms presented in [4]. In the following sections

we reinforce these connections by showing that network-oblivious algorithms for GEP and list

ranking can be derived by exploiting multicore-oblivious solutions as well (see Sections 5.2

and 6.2, respectively).

5. Gaussian Elimination Paradigm

Let x be an n × n matrix with entries from an arbitrary domain S, and let f : S × S ×
S × S → S be an arbitrary function. By Gaussian Elimination Paradigm [7] we refer to the

computation in Figure 9, where the algorithm modifies x by applying a given set of updates,

denoted by 〈i, j, k〉 for i, j, k ∈ [0, n). We let Σf denote the set of updates the algorithm

needs to perform. Many problems can be solved by GEP, including Floyd-Warshall’s all-pairs

shortest path, Gaussian Elimination and LU decomposition without pivoting, and matrix

multiplication.

A cache-oblivious recursive implementation of GEP, called I-GEP, was presented in [30]

and parallelized in [7] for multicore models with one level of cache. I-GEP consists of four

recursive functions A, B, C and D which are reproduced in the appendix for convenience.

The functions accept as input four matrices X ≡ x[I, J], U ≡ x[I,K], V ≡ x[K,J] and

W ≡ x[K,K], where I, J,K denote suitable intervals in [0, n), and they differ in the amount

18

Input: n × n matrix x, function f : S × S × S × S → S, set Σf of triplets 〈i, j, k〉, with
i, j, k ∈ [0, n).
Output: transformation of x defined by f and Σf .

1: for k ← 0 to n− 1 do
2: for i← 0 to n− 1 do
3: for j ← 0 to n− 1 do
4: if 〈i, j, k〉 ∈ Σf then
5: x[i, j]← f(x[i, j], x[i, k], x[k, j], x[k, k])

Figure 9: Gaussian Elimination Paradigm (GEP).

of overlap X, U , V and W have among them: A assumes completely overlapping matrices,

B (resp., C) expects that X ≡ V and U ≡ W (resp., X ≡ U and V ≡ W), and D assumes

completely non-overlapping matrices (other types of overlapping are not possible). Each

function performs updates in Σf ∩ (I × J × K) (i.e., each update 〈i, j, k〉 such that x[i, j],

x[i, k], x[k, j] and x[k, k] are contained in X,U, V, and W , respectively) by means of eight

recursive calls to A, B, C and D, and using suitable quadrants of X,U, V, and W as inputs.

The initial call is A(x, x, x, x). The four functions also differ in the amount of parallelism

they offer: intuitively, the less the overlap among the input matrices the more flexibility the

function has in ordering its recursive calls, and thus leading to better parallelism.

I-GEP produces the correct output under certain conditions which are met by all notable

instances mentioned above, and incurs O(n3/B
√
C) cache misses and terminates in O(n3/p+

n log2 n) parallel time [7] when executed on p cores with one cache level of size C and block

length B, for both shared and distributed caches. Also presented in [7] is C-GEP which

extends I-GEP and implements correctly any instance of GEP with no asymptotic degradation

in performance. Finally, tiled I-GEP [11] runs in O(n3/p+n) parallel time without increasing

the cache complexity on HM [31] but is not multicore-oblivious.

In the next subsections we show that the parallel implementation of I-GEP can be trans-

formed into an MO algorithm through the SB scheduler. Then, we describe the NO algorithm

and introduce the notion of commutative GEP computation to prove its correctness.

5.1. Multicore-Oblivious Algorithm

Theorem 8 below states the performance of I-GEP under SB scheduler. The cache-miss

bound is based on the observation that a total of Θ
(
n3/(Ci

√
Ci)
)

tasks are anchored at level-i

caches incurring O
(
Ci/Bi +

√
Ci
)

level-i cache-misses each. The parallel time follows from

the observation that if Ci is larger than piCi−1 by the factor stated in the theorem, the critical

path of the I-GEP computation DAG has no asymptotic effect on its parallel time.

Theorem 8. When executed under the SB scheduler, I-GEP on an n× n input, n2 ≥ Ch−1,

incurs O
(
n3/(qiBi

√
Ci)
)

cache misses at each level-i cache, for all 1 ≤ i ≤ h − 1, and

terminates in O
(
n3/p

)
parallel time, provided all caches are tall, and Ci ≥ ci · pi · Ci−1 with

ci = 2 log2 (Ci/Ci−1) holds for 2 ≤ i ≤ h− 1. These bounds are optimal.

19

I-GEP’s D N-GEP’s D∗
Round

1

D(X11, U11, V11,W11),D(X12, U11, V12,W11)
D(X21, U21, V11,W11),D(X22, U21, V12,W11)

D∗(X11, U11, V11,W11),D∗(X12, U12, V22,W22)
D∗(X21, U22, V21,W22),D∗(X22, U21, V12,W11)

Round
2

D(X11, U12, V21,W22),D(X12, U12, V22,W22)
D(X21, U22, V21,W22),D(X22, U22, V22,W22)

D∗(X11, U12, V21,W22),D∗(X12, U11, V12,W11)
D∗(X21, U21, V11,W11),D∗(X22, U22, V22,W22)

Table 2: Recursive calls performed by D and D∗; calls in a round are performed in parallel.

Proof. Since I-GEP accesses data only inside recursive function calls with input size 1× 1, it

suffices to compute the misses incurred only by tasks with space bound ≤ Ch−1. Let τ be a

task anchored at a level-i cache λ. Observe that each subtask generated by τ has space bound

s(τ)/4, where s(τ) is the space bound of τ . Moreover, since pi ≥ 2⇒ Ci ≥ ci ·pi ·Ci−1 > 4Ci−1

for i ∈ [2, h−1], each descendant of τ anchored at an Li−1 and an L1 cache under shadow(λ)

will have space bound larger than Ci−1/4 and Ω
(
B2

1

)
, respectively. There are Θ

(
n/
√
Ci
)
,

Θ
(
n2/Ci − n/

√
Ci
)

and Θ
(
n3/(Ci

√
Ci)− 2 · n2/Ci + n/

√
Ci
)

tasks with space bound Θ (Ci)

corresponding to I-GEP function A, B/C and D, respectively. Observing that when executed

entirely under λ any such task will incur O
(√
Ci + Ci/Bi

)
misses in λ, the claimed cache-

miss bound follows. Since I-GEP includes matrix multiplication, a cache-miss lower bound for

I-GEP matching its upper bound can be proved by extending the lower bound result proved

in [17] for matrix multiplication on a two-level multicore model to the multi-level model.

We will compute the parallel running time inductively. Let T i(s) be an upper bound on

the parallel running time of any I-GEP function with space bound s executed on any level-i

cache. Clearly, when anchored at any L1 cache and thus executed by a single core, for any task

τ1 with space bound Θ (C1), T 1(C1) = O
(
C

3/2
1

)
= O

(
C

3/2
1 /p′1

)
(since p′1 = 1). Hence as

inductive hypothesis let us assume that T i−1(Ci−1) = O
(
C

3/2
i−1/p

′
i−1

)
holds for some i−1 ≥ 1

(recall that p′i−1 is the number of cores subtended by any level-(i−1) cache). Now consider any

task τ with space bound Θ (Ci) anchored at any level-i cache λ. Following [7] one can verify

that the critical pathlength of τ isO
(√

Ci/Ci−1 log2
√
Ci/Ci−1 · T i−1(Ci−1)

)
, and thus using

Brent’s principle, T i(Ci) = O
(

((Ci/Ci−1)3/2/pi +
√
Ci/Ci−1 log2

√
Ci/Ci−1) · T i−1(Ci−1)

)
.

Since Ci ≥ ci · pi · Ci−1 and ci = 2 log2 (Ci/Ci−1), we get
√
Ci/Ci−1 log2

√
Ci/Ci−1 ≤

1
8 (Ci/Ci−1)3/2/pi ⇒

√
Ci/Ci−1 log2

√
Ci/Ci−1 ·T i−1(Ci−1) = O

(
C

3/2
i /p′i

)
. Also Ci ≥ ci ·pi ·

Ci−1 implies C
3/2
i /p′i ≥ C1

√
Ci > 1 for all i, and thus (Ci/Ci−1)3/2/pi =

(
C

3/2
i /p′i

)
/
(
C

3/2
i−1/p

′
i−1

)
=

O
(
C

3/2
i /p′i

)
. Hence, T i(Ci) = O

(
C

3/2
i /p′i

)
. Extending the induction up to level-(h− 1), we

obtain, T h−1(Ch−1) = O
(
C

3/2
h−1/p

′
h−1

)
= O

(
C

3/2
h−1/p

)
, and since there are O

(
(n/
√
Ch−1)3

)
I-GEP functions with space bound Θ (Ch−1), we conclude that T (n) = O

(
(n/
√
Ch−1)3 · C3/2

h−1/p
)

=

O
(
n3/p

)
. Since I-GEP performs Ω

(
n3
)

work, the parallel speed-up is optimal for p =∏h
i=1 pi =

∏h−1
i=2 pi ≤ (Ch−1/C1)

∏h−1
i=2 (1/ci), which is the maximum number of cores al-

lowed in the HM model due to the constraints on relative cache sizes.

20

5.2. Network-Oblivious Algorithm

N-GEP is an optimal network-oblivious algorithm which performs correctly any commu-

tative GEP computation which is solved by I-GEP. It exhibits space optimality, which is

not yielded by a straightforward network-oblivious implementation of I-GEP, and is opti-

mal on M(p,B) and on the D-BSP model for a wide range of their machine parameters. A

GEP computation is commutative if its function f satisfies f(f(y, u1, v1, w1), u2, v2, w2) =

f(f(y, u2, v2, w2), u1, v1, w1) for each y, u1, v1, w1, u2, v2, w2 in S. Not all GEP computa-

tions are commutative, however all of the instances of GEP for the aforementioned problems

are commutative.

N-GEP is built on the parallel implementation of I-GEP in [7] (given in appendix for

convenience) from which it inherits the recursive structure, and is designed for M(n2/ log2 n)

(the number of PEs reflects the critical pathlength of I-GEP). N-GEP consists of four functions

A, B, C and D∗: the first three functions are simple adaptations of their counterparts in I-

GEP to the M(n2/ log2 n) model; in contrast, D∗ is based on I-GEP’s D but solves the eight

recursive calls in a different order and is equivalent to D for commutative GEP computations.

Recall that D consists of eight recursive calls to itself which are solved in two rounds

of four parallel calls each and accept suitable quadrants6 of X, U , V and W as input (see

Table 2). We observe that, in each round, there are quadrants of U , V and W which are given

as input to two concurrent calls. Since these quadrants are required in read-only mode, D can

be efficiently executed on a CREW shared-memory, as the model where I-GEP was designed.

A network-oblivious implementation of D increases the communication complexity of the

algorithm notably: indeed, if k PEs read the same value stored in an unique PE, then the

communication complexity is Θ (k) (while it is O (1) in a CREW shared-memory). However,

if quadrants are replicated, communication decreases at the cost of a non-constant memory

blow-up. Hence, we adopt D∗ where recursive calls are ordered in such a way no quadrants of

U and V are required twice in a round (see Table 2). D∗ exhibits a constant memory blow-up

and is equivalent to D for commutative GEP computations, since subproblems in D can be

performed in any order when a GEP computation is commutative. We note that W11 and

W22 are still required twice in each round: however, since W12 and W21 are not used, W22 and

W22 can be duplicated without a memory blow-up by setting W12 = W11 and W21 = W22.

The following theorem shows that N-GEP correctly computes any commutative GEP

computation solved by I-GEP, and performs optimally on the M(p,B) and D-BSP models.

Theorem 9. The network-oblivious algorithm N-GEP performs correctly any commutative

GEP computation solved by I-GEP. When executed on M(p,B) for p ≤ n2/ log2 n and input

size n, N-GEP exhibits optimal Θ
(
n3/p

)
computation complexity and O

(
n2/(
√
pB) + n log2 n

)
communication complexity, which is optimal when p ≤ n2/ log4 n and B ≤ n/(√p log2 n). Fur-

thermore, N-GEP is optimal on a D-BSP(P, g,B) when P ≤ n/ log n and Bi = O
(
n2i/2/(P log n)

)
,

6We denote the top-left, top-right, bottom-left and bottom-right quadrants of X by X11, X12, X21 and
X22, respectively (similarly for U , V and W).

21

for each 0 ≤ i < logP .

Proof. When a GEP computation is commutative, updates in I-GEP’s D can be performed

in any order since U , V and W are fixed in D. Then, it can be proved by induction that

N-GEP’s D∗ is equivalent to I-GEP’s D. As a consequence, A, B and C are also equivalent

to their respective implementations in I-GEP. The first part of the theorem follows.

When N-GEP is executed on M(p,B), a depth-i recursive call to D∗ with input size

m = n/2i is executed by q M(p,B)-processors, where p/4i ≤ q ≤ p (the exact value depends

on the kind of the i previous recursive calls). Since a call to D∗ consists of two rounds and in

each round four recursive calls to D∗ of size m/2 are performed in parallel, its communication

complexity HD∗(m, q,B) is upper bounded by the following simple recurrence:

HD∗(m, q,B) ≤

{
O (1) if q ≤ 1 or m ≤ 1

2HD∗(
m
2 ,

q
4 , B) +O

(
m
qB + 1

)
otherwise

which solves to O
(
m2/(qB) + min{√q,m}

)
. Similarly, it can be proved that the communica-

tion complexity isO
(
m2/(qB) +m logm

)
for functions B and C, andO

(
m2/(qB) +m log2m

)
for A, respectively. Since N-GEP consists of a call to A with m = n and q = p, the up-

per bound on the communication complexity of N-GEP follows. Similar recurrence systems

show that the computation complexity of functions A,B, C and D∗ is O
(
n2/p

)
as soon as

p ≤ n2/ log2 n. The space used by each M(p,B) processor while executing N-GEP is Θ
(
n2/p

)
space: indeed, D∗ does not require additional space since no new matrices are allocated, while

the amount of additional space required by A, B and C decreases geometrically in each recur-

sive level and is asymptotically negligible.

The optimality of the network-oblivious algorithm derives by observing that NO-GEP

solves matrix multiplication using only semiring operations and Θ
(
n2/p

)
space per processor.

Known lower bounds for this problem are Ω
(
n3/p

)
for computation and Ω

(
n2/(
√
pB)

)
for

communication [32]. Therefore, the optimality of N-GEP follows for the stated intervals of p

and B.

The upper bound on the communication time is derived as for the communication com-

plexity, however different Bi’s and gi’s are used in each recursive level. Tedious, but simple,

derivations shows that the communication time of N-GEP on D-BSP(P,g,B), for 1 < P ≤
n2/ log2 n, is O

(∑logP−1
i=0

(
n22i/2

BiP
+ n log n

)
gi

)
. The time matches, for the ranges stated in

the theorem, the lower bound in [27] for the communication time on the D-BSP of matrix mul-

tiplication algorithms using only semiring operations and O
(
n2/p

)
space per processor.

Finally, we affirm that N-GEP can be extended to correctly implement any commutative

GEP computation, without performance degradation, by adopting ideas from C-GEP.

22

6. List Ranking and Other Graph Algorithms

We now present multicore-oblivious and network-oblivious algorithms for list ranking and

other graph problems. We represent a linked list of n nodes as an array where each position

contains a node identifier and pointers to its successor and predecessor. The rank of a node

is its distance from the end of the list, and the list ranking problem consists in determining

the ranks of every node.

6.1. Multicore-Oblivious Algorithms

6.1.1. List Ranking

Our multicore-oblivious algorithm, named MO-LR, employs the list contraction technique

described in [33]: this technique solves the list ranking problem by identifying an independent

set S of the list7 of size Θ (n), contracting the list by removing nodes in S, recursively solving

the list ranking problem on the contracted list, and then extending the solution to the removed

nodes. It is not difficult to see that list contraction and the extension of the solution to nodes

in the independent set can be accomplished with O (1) sorts and scans using the CGC⇒SB

and CGC schedules, respectively. This algorithm is derived from those in [34, 35] by adopting

our multicore-oblivious primitives for sorting and scanning and by recursively contracting the

linked list down to a constant size, instead of a variable size based on architectural parameters.

We use as sorting primitive the multicore-oblivious algorithm MO-MS given in Section 3.4.

The multicore-oblivious algorithm, named MO-IS, for computing an independent set S is

given in Figure 10. We observe that each step of MO-IS is solved by O (1) sorts and scans

using the CGC⇒SB and CGC schedules, respectively. In Step 1 we identify a log log n coloring

of the nodes by applying twice the deterministic coin flipping algorithm in [33] which, given

a k-coloring, constructs a (1 + log k)-coloring: since the new color of a node is determined

by only the initial colors of the node and of its successor, O (1) sorts and scans suffices to

accomplish the coloring. During the j-th iteration of Step 7 we create duplicates of successor

and predecessor of each color j node v in the independent set S to indicate that v is in S.

Hence, when a node is found replicated in Step 6 of later iterations, it is removed and not

inserted in S because at least one of its neighbors is in S. Clearly, Steps 5-7 require O (1)

sorts and scans.

Theorem 10. MO-LR with input size n terminates in O((n/p) log n+(B1 log(pB1) + log n log log n)·
log(n/B1) · log log n) parallel time, and incurs O

(
(n/(qiBi)) logCi

n
)

cache misses at each

level-i cache, for all 1 ≤ i ≤ h−1, for n/ log log n = Ω
(
Ci logp′iB1

Ci

)
and Bi = O (n/(qi log n log log n)).

Proof. Consider the execution of MO-IS and let nj denote the number of list nodes of color j

after the coloring. At the beginning of the j-th iteration of the for loop, with 1 ≤ j ≤ log log n,

there are at most 3nj nodes of color j since at most 2nj nodes of color j were added in

earlier iterations. A loop iteration consists of O (1) sorts and scans of Θ (nj) nodes, and

7An independent set of a linked list is a subset S of its nodes such that no two nodes in S are adjacent.

23

MO-IS(L)
Input: linked list L of n nodes.
Output: an independent set.

1: [CGC⇒SB] Identify a log logn coloring of the nodes.
2: [CGC⇒SB] Sort a copy of the nodes by successor (and predecessor) to associate with

each node the color of its successor (and predecessor).
3: [CGC⇒SB] Group in consecutive memory positions nodes of the same color by sorting

nodes by color.
4: for each color 1 ≤ j ≤ log logn do
5: [CGC⇒SB] Sort nodes of color j by identifier.
6: [CGC] Identify and remove duplicates by comparing identifiers of consecutive nodes.

Add the remaining nodes to the independent set.
7: [CGC] Add a duplicate of the successor (and predecessor) of each remaining node and

move it in the respective color group. This is an indication that successors/predecessors
cannot be inserted into the independent set.

8: return all nodes added to the independent set.

Figure 10: MO-IS: multicore-oblivious algorithm for computing an independent set.

the j-th iteration requires O((nj/p) log nj + log nj log log nj) parallel steps if nj > pB1, and

O(B1 log(pB1)+log nj log log nj) otherwise because the scheduler reduces the number of active

cores so that at most one core has less than B1 nodes. It follows that MO-IS requires

O((n/p) log n+(B1 log(pB1)+log n log log n)·log log n) parallel steps since
∑log logn−1
j=0 nj = n.

Similarly, we can show that the j-th iteration incursO(nj/(qiBi) logCi
nj+(Ci/Bi) logp′iB1

(qiCi)+

log nj log log nj) misses, where the last term is due to the critical pathlength of sorting (applied

log log n times). Then, MO-IS incurs O((n/(qiBi)) logCi
n+ (Ci/Bi) logp′iB1

(qiCi) log log n+

log n(log log n)2) misses. The upper bounds in the theorem follow by observing that the re-

turned independent set has size n/3 [34], and thus the linked list shrinks to a size smaller

than B1 in O(log(n/B1)) applications of MO-IS.

We note that the log(n/B1) factor can be replaced by O(log log n) by using a hybrid

list ranking algorithm [22] that switches to the standard pointer jumping algorithm after

O(log log n) contractions of the linked list using MO-IS. At this stage the linked list will have

O(n/ log n) nodes and hence, even though the size of the input will not contract when we use

the standard pointer jumping algorithm, the overall work will remain optimal. Each phase of

the pointer jumping algorithm involves a sort step (executed using CGC⇒SB) to order the

elements of the linked list in terms of the successor values, followed by a scan (executed using

CGC) to replace each element’s successor by the successor’s successor, which is the pointer-

jumping step. Also note that the log log n factor common to the 2nd and the 3rd term in the

parallel running time of MO-LR can be reduced to8 log(k) n for any integer constant k > 2

by repeating the coloring algorithm k times (instead of twice) in Step 1 of MO-IS.

8log(1) n = logn, and for any positive integer k > 1, log(k) n = log log(k−1) n.

24

6.1.2. Other Graph Problems

By using the CGC hint, it is straightforward to obtain as in [22, 34, 35] multicore-oblivious

algorithms for Euler tour, and several tree problems such as rooting a tree, traversal number-

ing, vertex depth, subtree size and connected components of a forest. These algorithms have

the same complexity as MO-LR.

Our multicore-oblivious algorithm for computing the connected components of a graph is

based on the PRAM CREW algorithm in [36] adapted to adjacency lists, and uses MO-LR

and tree computations to obtain the following result. Again, these algorithms are derived

from the algorithms in [34, 35] by adopting our multicore-oblivious primitives for sorting and

scanning and by recursively contracting the graphs down to a constant size, instead of variable

sizes based on architectural parameters. More details are given in [31].

Theorem 11. There exists a multicore-oblivious algorithm for computing the connected com-

ponents of a graph of n nodes and m edges, which terminates in O(N logN log(N/B1)/p +

(B1 log(pB1) log logN+logN(log logN)2)(log2(N/B1))) parallel time, and incurs O(N/(qiBi) logCi
N

log(N/B1) + ((Ci/Bi) logp′iB1
(qiCi) log log n+ logN(log log n)2) log2(N/B1)) cache misses at

each level-i cache, for all 1 ≤ i ≤ h− 1, for N = n+m.

6.2. Network-Oblivious Algorithms

6.2.1. List Ranking

Our network-oblivious algorithm, named NO-LR, is defined on M(n1−ε), where ε ∈ (0, 1)

is an arbitrary constant, and employs the list contraction technique described in the previous

section. NO-LR relies on algorithm NO-IS which computes an independent set of a list.

Both algorithms are simple adaptations to the network-oblivious framework of the respective

multicore-oblivious implementations. However, while casting MO-IS to the network-oblivious

framework, some attention is required for improving performance. Below, we describe the

most relevant adjustments.

The sorting and scan primitives in NO-IS are carried out by the following network-oblivious

algorithms. The scan operations are implemented through a casting to M(n1−ε) of the al-

gorithm MO-PS described in Section 3.2.2 for prefix sums; the so defined algorithm exhibits

O (log p) communication and O (n/p) computation complexities on M(p,B), for each p ≤ n1−ε

and B ≥ 1. For sorting, NO-IS uses the network-oblivious sorting algorithm in [4] based on

column sort. However, differently than the original algorithm, which is specified on M(n), we

assume the network-oblivious algorithm to be defined in M(n1−ε). This improves the perfor-

mance of the algorithm when executed on M(p,B), for each p ≤ n1−ε and B ≥ 1, yielding

O
(
n/(pB) +

√
n/p

)
communication and Θ (n log n/p) computation complexities. Further

details on the primitives may be found in [31]. We note that a network-oblivious version of

SPMS (see Section 3.4.2) looks likely, though there are some technical issues to address to

port it from shared memory to the network-oblivious framework: however, this is beyond the

scope of this paper, so we instead present the column sort algorithm.

25

Algorithm NO-IS guarantees that, at the beginning of the j-th iteration of the for loop

(see Step 4 of MO-IS in Figure 10), for each 1 ≤ j ≤ log log n, the Nj nodes with the same

color are evenly distributed among the n1−ε PEs. Furthermore, since the network-oblivious

algorithms for sort and scan are designed in M(n1−ε), the sort and scan operations within

the j-th iteration are performed by Θ (Nj)
1−ε

PEs evenly selected among all the PEs. The

network-oblivious algorithm is similar to the multicore-oblivious algorithm in the other details,

and we obtain the following performance bounds.

Theorem 12. When executed on M(p,B) for p ≤ (n/ log log n)1−ε and input size n, NO-LR

exhibits optimal Θ ((n/p) log n) computation complexity and O(n/(pB)+((n/p) log log n)1/2+

pε log n log log n) communication complexity, which is optimal for B = O(B̃), where B̃ =

min{(n/(p log log n))1/2, n/(p1+ε log n log log n)}. Furthermore, NO-LR is optimal on a D-BSP(P, g,B)

for P ≤ (n/ log log n)1−ε and B0 = O(B̃).

Proof. As noted in the proof of Theorem 10, at the beginning of the i-th iteration of the

for loop, with 1 ≤ j ≤ log log n, there are at most Ni = 3ni nodes of color i, and a loop

iteration consists of O (1) sorts and scans of Θ (ni) nodes using n1−εi PEs evenly distributed

among the n1−ε PEs. Hence, when executed on the M(p,B), sorts and scans are performed

by pi = min{n1−εi , p} processors yielding O
(
ni/(pB)) + nεi/B +

√
ni/p+ n

ε/2
i + log p

)
com-

munication and O (ni log n/p+ nεi log n) computation complexities. The cost for moving

the Θ (ni) nodes in the n1−εi selected PEs, that is min{p, n1−εi } processors of M(p,B), is

bounded by O (nεi/B + pε) for communication and for O (nεi) computation. Finally we re-

mark that at the end of the j-th iteration the algorithm creates at most nj duplicates of

different colors, which should be distributed among PEs in order to guarantee that nodes of

same color are evenly distributed in following iterations. This can be accomplished through

a sort and at most log log n scans (one per color). Therefore, the cost of the j-th it-

eration is O
(
ni/(pB) + nεi/B +

√
ni/p+ n

ε/2
i + pε + log p log log n

)
for communication and

O (ni log n/p+ nεi log n) for computation. Since
∑log logn−1
j=0 nj = n, we have that the commu-

nication and computation complexities of NO-IS areO
(
n/(pB) +

√
(n/p) log log n+ pε log log n

)
and O

(
n log n/p+ nε(log log n)1−ε log n

)
, respectively.

The upper bounds on NO-LR follow by observing that the returned independent set has

size n/3, and then the input of recursive calls decrease geometrically. In a D-BSP with the

specified parameters, the communication time of NO-LR is O (ng0/p+ 1) which is clearly

optimal.

6.2.2. Other Graph Problems

As with multicore-oblivious algorithms, it is easy to derive network-oblivious algorithms

with the same complexities as NO-LR for Euler tour and many tree problems. By using

the NO-LR algorithm and the network-oblivious primitives for sorting and scan described in

Section 6.2.1, we get the following result for computing connected components in a graph.

Theorem 13. There exists an network-oblivious algorithm defined on M((n+m)1−ε), where ε

26

is an arbitrary constant in (0, 1), for computing the connected components of a graph of n nodes

and m edges. On M(p,B) for p ≤ (Ñ/Γ)1−ε, it exhibits O(Ñ/(pB) + (ÑΓ/p)1/2 + pεΓ log n)

communication and O((Ñ/p) log n) computation complexities, where Ñ = n + m log n and

Γ = log n log log n.

7. Conclusion

In this paper we have addressed the design of multicore algorithms that are oblivious to

machine parameters. To this end, we proposed the HM model, which models the multicore as a

parallel shared-memory machines with hierarchical multi-level caching, extending the 3-level

multicore caching model in [10]. Then, we introduced the notion of a multicore-oblivious

algorithm, which is a parallel algorithm that makes no mention of multicore parameters,

but is allowed to supply certain directives (‘hints’) to the run-time scheduler to enable it

to schedule the algorithm to exploit efficiency in both parallelism and caching. We have

presented multicore-oblivious algorithms for several problems, including matrix transposition,

FFT, sorting, GEP, list ranking and connected components.

We introduced two major types of scheduler hints, CGC (coarse-grained contiguous) and

SB (space-bound), and a third one that combines these two (CGC⇒SB). While these were

sufficient to extract efficiency in the algorithms we have presented, it is conceivable that

a general-purpose run-time scheduler could be built to schedule a wide range of multicore

algorithms efficiently and in an oblivious manner by suitably enhancing this set of hints.

As mentioned earlier, the notion of a multicore-oblivious algorithm is complementary to

that of a network-oblivious algorithm [4]. However there are some important differences: In

going from multicore-oblivious to network-oblivious, we need to move from shared-memory

to message passing, which involves moving from the fine-grained reads in shared-memory to

a coarse-grained message-passing environment. Here we are helped by the fact that the local

memory of a processor in the network-oblivious model is large enough to hold all of the data

that is sent to it (in contrast to the limited sizes of the caches in the multicore-oblivious model).

Also, going from multicore-oblivious to network-oblivious involves moving from the concurrent

read environment used in multicores to exclusive read. In going from network-oblivious to

multicore-oblivious, we need to move from message passing to shared-memory, and also need

to develop methods to exploit locality at all levels of the cache hierarchy. Nevertheless,

in this paper we have established several connections between efficient multicore-oblivious

and network-oblivious algorithms: we derived network-oblivious algorithms for GEP and list

ranking by suitably adapting our multicore-oblivious algorithms, and our multicore-oblivious

algorithms for matrix transposition and FFT from network-oblivious algorithms in [4]. These

results raise hopes for a unified notion of obliviousness in parallel computation, which may

be of interest with the advent of networks of multicores, such as the Blue Waters system [37].

We conclude with a summary of our main results in Table 3, where some minor constraints

relating to cache and network parameters are omitted. Recall that under multicore-oblivious,

27

P
ro

b
le
m

T
im

e
M

O
c
a
ch

e
c
o
m
-

p
le
x
it
y

N
O

c
o
m
m
u
n
ic
a
ti
o
n

c
o
m
p
le
x
it
y

M
a
x

v
a
lu
e
o
f
p

M
a
tr

ix
tr

a
n
sp

o
si

ti
o
n

Θ
(n

2
/
p
)

Θ
(n

2
/
(q
i
B
i
))

Θ
(n

2
/
(B
p
))

[4
]

M
O

:
n
2
/
B

1

N
O

:
n
2

P
re

fi
x

su
m

Θ
(n
/
p
)

Θ
(n
/
(q
i
B
i
))

Θ
(l

o
g
p
)

[3
1
]

M
O

:
n
/
(B

1
lo

g
n

)
N

O
:
n
/

lo
g
n

F
F

T
Θ

(n
lo

g
n
/
p
)

Θ
(n
/
(q
i
B
i
)
lo

g
C

i
n

)
Θ

(n
/
(p
B

)
lo

g
n
/
p
n

)
[4

]
M

O
:
n
/
B

1

N
O

:
n

S
o
rt

in
g

Θ
(n

lo
g
n
/
p
)

Θ
(n
/
(q
i
B
i
)
lo

g
C

i
n

)
Θ

(n
/
(p
B

))
[3

1
]

M
O

:
n
/
(B

1
lo

g
lo

g
n

)
N

O
:
n
1
−
ε
,
ε
∈

(0
,1

)

G
E

P
Θ

(n
3
/
p
)

Θ
(n

3
/
(q
i
B
i

√
C
i
))

Θ
(n

2
/
(B
√
p
))

M
O

:
m

in
{ n

2
/

lo
g
2
n
,C

h
−
1
/
(C

1

∏ h−
1

i=
2

(2
lo

g
2

(C
i
/
C
i−

1
)))}

N
O

:
n
2
/

lo
g
2
n

L
is

t
ra

n
k
in

g
Θ

(n
lo

g
n
/
p
)

O
(n
/
(q
i
B
i
))

O
(n
/
(B
p
))

M
O

:
n
/
(B

1
+

lo
g

lo
g
n

)
lo

g
n

lo
g

lo
g
n

N
O

:
(n
/

lo
g

lo
g
n

)1
−
ε
,
ε
∈

(0
,1

)

T
a
b

le
3
:

S
u

m
m

a
ry

o
f

o
u

r
re

su
lt

s.
(M

O
:

m
u

lt
ic

o
re

-o
b

li
v
io

u
s,

N
O

:
n

et
w

o
rk

-o
b

li
v
io

u
s

28

the cache complexity at the i-th level is defined as the maximum number of block transfers

into and out of any single Li cache by the p′i cores which share Li, while under network-

oblivious, the communication complexity is the maximum number of blocks sent or received by

a processor. For prefix sums (the first row in the table), the network-oblivious communication

cost is much smaller than the multicore-oblivious cache complexity due to the fact that the

network model assumes that the data is initially distributed across the processors in the

desired configuration, while in the HM model, all data resides initially in the shared memory,

and the loading of the data into caches factors into the cache complexity. For sorting, the

network-oblivious algorithm we analyze is based on column sort, while the multicore-oblivious

algorithm, SPMS [17], is a hybrid of merge-sort and sample-sort; these are two different

algorithms with different complexities, giving rise to the differences in the table, both for

sorting, and for list ranking, which uses sorting as a subroutine. For all other entries in the

table, the network-oblivious communication complexity coincides with the average number of

cache misses incurred by a core in a level-i cache of size N/p, where N is the input size (i.e.,

N is n2 for matrix computations, and is n otherwise).

Acknowledgment

The authors thank the anonymous reviewers for their comments. F. Silvestri would also

like to thank A. Pietracaprina and G. Pucci for useful discussions. V. Ramachandran was

supported in part by NSF Grants NSF CCF-0830737 and CCF-0850775. F. Silvestri was

supported in part by MIUR under PRIN national research project “AlgoDEEP”, and by

University of Padova under projects STPD08JA32 and CPDA121378.

29

References

[1] M. Frigo, C. E. Leiserson, H. Prokop, S. Ramachandran, Cache-Oblivious Algorithms,

ACM Transactions on Algorithms 8 (1) (2012) 4:1–4:22.

[2] L. Arge, G. S. Brodal, R. Fagerberg, Cache-Oblivious Data Structures, in: D. P. Mehta,

S. Sahni (Eds.), Handbook of Data Structures and Applications, chap. 34, Chapman and

Hall/CRC 2004, 34.1–34.27, 2004.

[3] E. D. Demaine, Cache-Oblivious Algorithms and Data Structures, 2002.

[4] G. Bilardi, A. Pietracaprina, G. Pucci, F. Silvestri, Network-Oblivious Algorithms, in:

Proc. 21st IEEE International Parallel and Distributed Processing Symposium (IPDPS),

IEEE Computer Society, 1–10, 2007.

[5] L. Arge, M. Goodrich, M. Nelson, N. Sitchinava, Fundamental parallel algorithms for

private-cache chip multiprocessors, in: Proc. 20th ACM Symposium on Parallelism in

Algorithms and Architecture (SPAA), ACM, 197–206, 2008.

[6] M. A. Bender, J. T. Fineman, S. Gilbert, B. C. Kuszmaul, Concurrent cache-oblivious

B-trees, in: Proc. 17th ACM Symposium on Parallelism in Algorithms and Architecture

(SPAA), ACM, 228–237, 2005.

[7] R. A. Chowdhury, V. Ramachandran, The Cache-Oblivious Gaussian Elimination

Paradigm: Theoretical Framework, Parallelization and Experimental Evaluation, Theory

of Computing Systems 47 (4) (2010) 878–919.

[8] M. Frigo, V. Strumpen, The Cache Complexity of Multithreaded Cache Oblivious Algo-

rithms, Theory of Computing Systems 45 (2) (2009) 203–233.

[9] G. Blelloch, P. Gibbons, Effectively Sharing a Cache Among Threads, in: Proc. 16th

ACM Symposium on Parallelism in Algorithms and Architecture (SPAA), ACM, 235–

244, 2004.

[10] G. Blelloch, R. A. Chowdhury, P. Gibbons, V. Ramachandran, S. Chen, M. Kozuch,

Provably Good Multicore Cache Performance for Divide-and-Conquer Algorithms, in:

Proc. 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 501–510,

2008.

[11] R. A. Chowdhury, V. Ramachandran, Cache-efficient dynamic programming algorithms

for multicores, in: Proc. 20th ACM Symposium on Parallelism in Algorithms and Archi-

tecture (SPAA), ACM, 207–216, 2008.

[12] L. G. Valiant, A bridging model for multi-core computing, Journal of Computer and

System Sciences 77 (1) (2011) 154–166.

30

[13] R. A. Chowdhury, F. Silvestri, B. Blakeley, V. Ramachandran, Oblivious Algorithms

for Multicores and Network of Processors, in: Proc. 24th IEEE International Parallel &

Distributed Processing Symposium (IPDPS), IEEE Computer Society, 1–12, 2010.

[14] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, H. V. Simhadri, Scheduling irregular par-

allel computations on hierarchical caches, in: Proc. 23rd ACM symposium on Parallelism

in algorithms and architectures (SPAA), ACM, 355–366, 2011.

[15] R. Cole, V. Ramachandran, Revisiting the Cache Miss Analysis of Multithreaded Algo-

rithms, in: Proc. 10th Latin American Theoretical Informatics (LATIN), vol. 7256 of

LNCS, Springer-Verlag, 172–183, 2012.

[16] R. Cole, V. Ramachandran, Efficient resource oblivious algorithms for multicores with

false sharing, in: Proc. 26th IEEE International Parallel & Distributed Processing Sym-

posium (IPDPS), IEEE Computer Society, 201–214, 2012.

[17] R. Cole, V. Ramachandran, Resource oblivious sorting on multicores, in: Proc. 37th

International Colloquium on Automata, Languages and Programming (ICALP), vol.

6198 of LNCS, Springer-Verlag, 226–237, 2010.

[18] G. E. Blelloch, P. B. Gibbons, H. V. Simhadri, Low depth cache-oblivious algorithms,

in: Proc. 22nd ACM symposium on Parallelism in algorithms and architectures (SPAA),

ACM, 189–199, 2010.

[19] B. Chamberlain, D. Callahan, H. Zima, Parallel Programmability and the Chapel Lan-

guage, International Journal of High Performance Computing Applications 21 (3) (2007)

291–312, ISSN 1094-3420.

[20] J. Hennessy, D. Patterson, A. Arpaci-Dusseau, Computer architecture: a quantitative

approach, The Morgan Kaufmann Series in Computer Architecture and Design, Morgan

Kaufmann, 2007.

[21] R. E. Ladner, M. J. Fischer, Parallel Prefix Computation, Journal of the ACM 27 (4)

(1980) 831–838, ISSN 0004-5411.

[22] J. JáJá, An Introduction to Parallel Algorithms, Addison-Wesley, 1992.

[23] R. J. Lipton, R. E. Tarjan, A separator theorem for planar graphs, SIAM Journal on

Applied Mathematics 36 (1979) 177–189.

[24] P. d. l. Torre, C. P. Kruskal, Submachine Locality in the Bulk Synchronous Setting

(Extended Abstract), in: Proc. 2nd European Conference on Parallel Processing (Euro-

Par), Springer-Verlag, 352–358, 1996.

[25] G. Bilardi, A. Pietracaprina, G. Pucci, Decomposable BSP: A Bandwidth-Latency Model

for Parallel and Hierarchical Computation, in: J. Reif, S. Rajasekaran (Eds.), Handbook

of Parallel Computing: Models, Algorithms and Applications, CRC Press, 277–315, 2007.

31

[26] G. Bilardi, C. Fantozzi, A. Pietracaprina, G. Pucci, On the Effectiveness of D-BSP as a

Bridging Model of Parallel Computation, in: International Conference on Computational

Science (ICCS), vol. 2074 of LNCS, Springer-Verlag, 579–588, 2001.

[27] F. Silvestri, Oblivious Computations on Memory and Network Hierarchies, Ph.D. thesis,

Department of Information Engineering, University of Padova, http://paduaresearch.

cab.unipd.it/1595, 2009.

[28] K. T. Herley, Network Obliviousness, in: D. A. Padua (Ed.), Encyclopedia of Parallel

Computing, Springer, 1298–1303, 2011.

[29] G. Bilardi, A. Pietracaprina, G. Pucci, M. Scquizzato, F. Silvestri, Network-Oblivious

Algorithms, manuscript, 2013.

[30] R. A. Chowdhury, V. Ramachandran, Cache-Oblivious Dynamic Programming, in: Proc.

17th ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, 591–600, 2006.

[31] R. A. Chowdhury, F. Silvestri, B. Blakeley, V. Ramachandran, Oblivious Algorithms

for Multicores and Network of Processors, Tech. Rep. 09-19, Univ. of Texas at Austin,

ftp://ftp.cs.utexas.edu/pub/techreports/tr09-19.pdf, 2009.

[32] D. Irony, S. Toledo, A. Tiskin, Communication lower bounds for distributed-memory

matrix multiplication, Journal of Parallel and Distributed Computing 64 (9) (2004) 1017–

1026.

[33] R. Cole, U. Vishkin, Deterministic coin tossing with applications to optimal parallel list

ranking, Information and Control 70 (1) (1986) 32–53, ISSN 0019-9958.

[34] L. Arge, M. Goodrich, N. Sitchinava, Parallel External Memory Graph Algorithms, in:

Proc. 24th IEEE International Parallel and Distributed Processing Symposium (IPDPS),

IEEE Computer Society, 1–17, 2010.

[35] Y. J. Chiang, M. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, J. S. Vitter,

External-memory graph algorithms, in: Proc. 6th ACM-SIAM Symposium on Discrete

Algorithms (SODA), SIAM, 139–149, 1995.

[36] F. Y. Chin, J. Lam, I. N. Chen, Efficient parallel algorithms for some graph problems,

Communications of the ACM 25 (9) (1982) 659–665.

[37] Blue Waters project, http://www.ncsa.uiuc.edu/BlueWaters, 2012.

32

http://paduaresearch.cab.unipd.it/1595
http://paduaresearch.cab.unipd.it/1595
ftp://ftp.cs.utexas.edu/pub/techreports/tr09-19.pdf
http://www.ncsa.uiuc.edu/BlueWaters

Appendix

For convenience, we reproduce from [7] the parallel cache-oblivious algorithm I-GEP de-

fined by the function f and the set Σf . I-GEP consists of four functions A, B, C and D
and the initial call is A(x, x, x, x), where x denotes the input n × n matrix (n is assumed

to be a power of 2). In the pseudocode, we denote the top-left, top-right, bottom-left and

bottom-right quadrants of X by X11, X12, X21 and X22, respectively (similarly for U , V and

W). We use the parallel construct to denote recursive calls that are invoked in parallel.

A(X,U, V,W)

Input: X ≡ U ≡ V ≡W ≡ x[I, I], where I is an interval in [0, n).

Output: execution of all updates in Σf ∩ T , where T = I × I × I.

Space Bound: S(m) = m2, where m = |I|.

1: if T ∩ Σf = ∅ then return

2: if X is a 1× 1 matrix then X ← f(X,U, V,W); return

3: A(X11, U11, V11,W11)

4: parallel : B(X12, U11, V12,W11), C(X21, U21, V11,W11)

5: D(X22, U21, V12,W11)

6: A(X22, U22, V22,W22)

7: parallel : B(X21, U22, V21,W22), C(X12, U12, V22,W22)

8: D(X11, U12, V21,W22)

B(X,U, V,W)

Input: X ≡ V ≡ x[I, J] and U ≡ W ≡ x[I, I], where I and J denote disjoint intervals (of

the same length) in [0, n).

Output: execution of all updates in Σf ∩ T , where T = I × J × I.

Space Bound: S(m) = 2m2, where m = |I|.

1: if T ∩ Σf = ∅ then return

2: if X is a 1× 1 matrix then X ← f(X,U, V,W); return

3: parallel : B(X11, U11, V11,W11), B(X12, U11, V12,W11)

4: parallel : D(X21, U21, V11,W11), D(X22, U21, V12,W11)

5: parallel : B(X21, U22, V21,W22), B(X22, U22, V22,W22)

6: parallel : D(X11, U12, V21,W22), D(X12, U12, V22,W22)

33

C(X,U, V,W)

Input: X ≡ U ≡ x[I, J] and V ≡ W ≡ x[J, J], where I and J denote disjoint intervals (of

the same length) in [0, n).

Output: execution of all updates in Σf ∩ T , where T = I × J × J .

Space Bound: S(m) = 2m2, where m = |I|.

1: if T ∩ Σf = ∅ then return

2: if X is a 1× 1 matrix then X ← f(X,U, V,W); return

3: parallel : C(X11, U11, V11,W11), C(X21, U21, V11,W11)

4: parallel : D(X12, U11, V12,W11), D(X22, U21, V12,W11)

5: parallel : C(X12, U12, V22,W22), C(X22, U22, V22,W22)

6: parallel : D(X11, U12, V21,W22), D(X21, U22, V21,W22)

D(X,U, V,W)

Input: X ≡ x[I, J], U ≡ x[I,K], V ≡ x[K,J] and W ≡ x[K,K], where I, J,K denote

intervals (of the same length) in [0, n), and I ∩K = ∅, and J ∩K = ∅.
Output: execution of all updates in Σf ∩ T , with T = I × J ×K.

Space Bound: S(m) = 4m2, where m = |I|.

1: if T ∩ Σf = ∅ then return

2: if X is a 1× 1 matrix then X ← f(X,U, V,W); return

3: parallel : D(X11, U11, V11,W11), D(X12, U11, V12,W11),

D(X21, U21, V11,W11), D(X22, U21, V12,W11)

4: parallel : D(X11, U12, V21,W22), D(X12, U12, V22,W22),

D(X21, U21, V21,W22), D(X22, U22, V22,W22)

34

	Introduction
	Our Results
	Paper Organization

	HM Model
	Multicore-Oblivious Algorithms on the HM Model
	Preliminaries
	Coarse-Grained Contiguous Scheduling
	Matrix Transposition
	Prefix sums

	Space-Bound Scheduling
	Matrix Transposition and Prefix Sums with SB

	CGC on SB Scheduling
	Fast Fourier Transform (FFT)
	Sorting
	Sparse Matrix Dense Vector Multiplication (SpM-DV)

	Review of Network-Obliviousness
	Gaussian Elimination Paradigm
	Multicore-Oblivious Algorithm
	Network-Oblivious Algorithm

	List Ranking and Other Graph Algorithms
	Multicore-Oblivious Algorithms
	List Ranking
	Other Graph Problems

	Network-Oblivious Algorithms
	List Ranking
	Other Graph Problems

	Conclusion

